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Abstract We present an in-depth investigation of a fully automated Fourier-based analysis to determine
the cell size and the width of its distribution in 3D biological tissues. The results are thoroughly tested
using generated images, and we offer valuable criteria for image acquisition settings to optimize accuracy.
We demonstrate that the most important parameter is the number of cells in the field of view, and we
show that accurate measurements can already be made on volume only containing 3 × 3 × 3 cells. The
resolution in z is also not so important, and a reduced number of in-depth images, of order of one per cell,
already provides a measure of the mean cell size with less than 5% error. The technique thus appears to be
a very promising tool for very fast live local volume cell measurement in 3D tissues in vivo while strongly
limiting photobleaching and phototoxicity issues.

1 Introduction

Cellular volume is a key parameter in various funda-
mental biological processes such as cell growth, division
or fate [1,2]. It is tightly regulated during cell cycle
[1], depends on the chemical and physical properties
of the cell’s microenvironment [2,3] and can be regu-
lated by cellular tension [4]. Different techniques have
been developed to measure the volume of isolated cells
such as 3D cell reconstruction [2], fluorescence exclu-
sion measurements [5] and commercial coulter counter
[6]. However, so far the regulation of cellular volume
within 2D/3D tissues remains unknown, which is a
brake for our understanding of tissue homeostasis. This
is mainly due to technical limitations associated with
the measurement of cellular volume inside a tissue and
its follow-up in time. Indeed, obtaining cellular volume
requires a precise segmentation of the cell boundaries in
3D. Consequently, it is most often necessary to acquire
a 3D stack of a sample in which the membrane [7] or
intercellular space [8] is fluorescent. However, at high
resolution, the amount of images which can be acquired
to create a 3D stack is experimentally limited. Specif-
ically, it is either limited by the acquisition speed of
the entire stack (up to several minutes) which is on the
same timescale as cell movements inside tissue or by
the amount of light cells can experience without photo-
bleaching and/or being damaged. Therefore, developing
a new tool which would require the minimum z slices
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acquisition is of real importance for time follow-up of
in vivo tissues.

Based on previous work [9], we propose here a 3D
Fourier transform analysis tool for live measurement of
cell volume within 3D tissues. Fourier analysis describes
an image as a superposition of sinusoidal functions
(repetitive patterns with a set frequency) [10]. Cohesive
tissues have the feature of being a tight assembly of sim-
ilar units, cells, and the resulting Fourier analysis conse-
quently displays one dominant frequency corresponding
to the average cell size. Here, we tested the accuracy of
the Fourier analysis by using in silico simulated data
of 3D tissues. This allowed us to independently vary all
important parameters, such as the number of cells in
field of view, cell size homogeneity and acquisition res-
olution. Based on this analysis, we propose protocols
to help define image acquisition parameters. We fur-
ther validated our Fourier analysis method on live cell
aggregates images, which represent good in vitro tumor
models [11].

2 Materials and methods

2.1 Cellular aggregates preparation

We use HT29 cells for these experiments. Cells are cul-
ture in DMEM (GIBCO, 61958-026) supplemented with
10% FBS (Pan Biotech, P308500) and 1% penicillin–
streptavidin (GIBCO, 15140-122). They are maintained
at 37oC with 5% CO2 and passaged twice a week.
Aggregates are formed using Ultra Low Adhesion 96
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Well Plates (Greiner Bio-One, 650970). After passag-
ing, cells are counted and diluted to a concentration
of 10,000 cells/mL. From this stock solution, a desired
number of cells are subsequently seeded into a well (for
example 300 cells/mL) and left to grow into aggregates
for a minimum of 48 h.

2.2 Two-photon imaging of cellular aggregates and
application of osmotic shocks

Aggregates were imaged either in simple wells with
#1 coverslip at the bottom or in 40µm-high microflu-
idic channel. Entrapment in the microfluidic chan-
nel prevented aggregates from moving around and
simplified media changes. One hour after the injec-
tion of the aggregates in the well or in the microflu-
idic chamber, the extracellular space was stained with
FITC-Dextran diluted at 2 mg/mL, thus staining the
interstitial fluid within the aggregate. All experiments
were conducted at 37oC in CO2-independent cell cul-
ture medium (GIBCO, 18045-088). Imaging was per-
formed using a two-photon setup on a Nikon micro-
scope equipped with a 780-nm laser. Osmotic shocks
were applied by adding 6 kDa Dextran at a concentra-
tion of 100 g/L (for details see [12]).

2.3 Artificial cell images generation

Synthetic 3D images of size L×L×L pixels mimicking
real tissues were generated. Random points (represent-
ing the centers of the cells) are added automatically
one after the other in a 3D matrix. For each new point,
a radius is randomly taken from a normal distribution
centered on r0 with a width σ. A new point, i, is only
added in the lattice if the sphere centered on i with
radius r(i) fits in with all other spheres. If not, a new
random point is chosen. When the number of spheres
increases, the probability that the new sphere fits in
the free space decreases. We thus used as a cutoff a
maximum number of attempts to add a cell. Note that
as the space has a very low probability of being fully
filled with compact spheres, the obtained lattice is not
regular even when σ is set to 0. The width of the size
distribution was adjusted in two ways, either by chang-
ing σ or by changing the number of possible attempts
for filling the lattice. As r0 defines the typical number of
pixels per cell, changing this value enabled to simulate
different magnifications used when acquiring real data
with different objectives at different resolutions. The
total number of cells that are visible in the image were
set by changing L, which corresponds to changing the
field of view in data acquisition. To avoid edge effects,
the actual space in which the centers were distributed
runs from −2rmax to L+2rmax in x, y, and z-direction.
The images were then cut out from the center to create
an L × L × L 3D stack.

Cell boundaries were then generated. More precisely,
a 3D Voronoi tessellation was performed, using cell cen-
ters as seeds. As experimentally the cells edges or faces
are larger than 1 pixel (Fig. 1a), the gray values of the

pixels in every Voronoi cell were scaled with the rela-
tive distance to the seed. This allowed obtaining a 3D
image much closer to real data (Fig. 1b). Amira soft-
ware was used to segment and visualize the simulated
data (Fig. 1c).

2.4 Fourier transform analysis

Fourier transformation was used to analyze the inten-
sity of the 3D images. The Fourier transform of the
intensity is expected to resemble the diffracted inten-
sity in an isotropic medium scattered by elastic pro-
cesses. Before applying Fourier transform, the images
were decomposed in periodic (p) and smooth compo-
nents (s). The Fourier transform was applied on p only
to avoid edge effects artifacts [13]. The discrete Fourier
transform (DFT) was computed using a fast Fourier
transform (FFT) algorithm [14] with convention:

Ĩ(k) =
L−1∑

l,m,n=0

I(x) exp(−2iπk · x) (1)

with I the intensity, x the discrete position indexed by
(l, n,m) and k = 1/L ∗ (s, t, u) the discrete wave vector
(L being dimensionless).

Consistent with elastic diffusion processes of slightly
ordered isotropic materials, a bright shell around an
even brighter center pixel was obtained (Fig. 1d). We
expect that the radius of the shell, kD, can be used to
obtain an estimation of the averaged cell diameter. To
properly determine kD, we took advantage of the spher-
ical symmetry of the FFT. Ĩ was interpolated in spher-
ical coordinates (k,θ,φ). The normalized power spectral
density of the cell aggregate is calculated:

en(k) =
k2

∫ |Ĩ(k)|2 sin θ dθ dφ
∫ |Ĩ(k)|2dk (2)

Different from conventions used in the analysis of elas-
tic diffusion of light, Eq. (2) is normalized by the total
power spectral density and not by the spectral volume.
en(k) then shows well-emerged peaks that we consid-
ered to determine the average cell size in the tissue
(Fig. 1f).

2.5 Local Fourier transform measurements

We performed local cell measurements on spheroid com-
pressed in between two plates (cylindrical geometry
Fig. 9a). First, we determined the radius and center
of the base of the cylinder using a global thresholding
of the aggregate and fitting the contour of this binary
image with a circle. Next, we divide our image in subim-
ages centered on a polar grid (r,θ), and we run the
Fourier analysis on each of this subimage and then aver-
age over θ, to get the cell size as a function of the radial
distance to the aggregate center.

All the codes necessary for running this global or local
analysis are freely available on github.
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(a) (c)(b)

(d) (f)(e)

Fig. 1 a Typical z-slice of an HT29 aggregate using two-
photon acquisition. Bar: 30µm. b Z-slice (128× 128 pixels)
of a simulated 3D aggregate generated using the Voronoi
method. The cells have an average radius of 11 pixels. Note
that faces parallel to the z-slice can result in large white
areas. c 3D rendering of the entire simulated 3D stack from
b where dz = 1 pixel, i.e., the same resolution as in x, y.
d Fourier transform of c. A bright center pixel and a light

spherical shell are visible. e 2D cross section of d. The mag-
nitude of the central peak is set to zero for rendering pur-
poses. f Spectral density energy along the purple and green
dashed line displayed in e. The black dashed line is the nor-
malized power spectral density en(k) as defined in Eq. (2).
The position of the main black peak provides an accurate
measurement of the mean cell size

2.6 Calculation of cell form and structure factors

The scattering pattern should be linked to a cell form
factor that informs on the mean symmetry properties
of the cells and a structure factor that informs on the
cellular arrangement. We calculated both factors inde-
pendently on simulated images. Cells that were entire
in the image volume (not cut by the borders) were con-
sidered. The centroid of the cells (which could differ
from the points used to generate the Voronoi tessella-
tion) was extracted, and masks were generated to dis-
play each cell individually. The power spectral density
was calculated for each single cell as in Eq. (2). The
cell-averaged power spectral density of the single cells
was then obtained:

en,cell(k) = Ncell

< k2
∫

celli
|Ĩ(k)|2 sin θ dθ dφ >cells
∫ |Ĩ(k)|2dk

(3)
with Ncell the number of entire cells in the image.

3 Results on simulated 3D aggregates

Using simulations on 3D aggregates, we will now show
that our Fourier analysis technique is a good tool for
measuring accurately the width and the average of the
cell size distribution. We will show how the Fourier peak
is arising from the combination of the form factor of
individual cells inside the aggregate and from the struc-
ture factor (linked to their spatial organization in 3D).
We will finally test the robustness of our analysis as a
function of the acquisition parameters usually used in
real data imaging.

3.1 Cell sizes

Figure 1d–e shows an isotropic diffusion pattern, sug-
gesting that the cells are only weakly ordered in the
aggregate. The radius of the shell should then provide
the mean distance in between cells. Hence, we will show
that this length corresponds to the diameter of individ-
ual cells in 3D compact aggregates as we address here.
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Fig. 2 The Fourier analysis accurately predicts the size
of cells from simulated data. a Curves resulting from the
Fourier analysis for three different values of r0, σ = 0, L =
128. Position of the peaks corresponds to the frequency or
wavelength of the artificial tissue. b Plot of DF as a function
of the original DV , with an affine fit with a slope of 0.96
(r2 = 0.992)

As the relationship between cell distance (DF ) and the
position of the frequency peak (kmax) is very sensitive
to the accuracy of the model used to describe the cell
aggregate [15], we first defined DF = γ/kmax with γ a
factor of proportionality. We compared the value of cell
size computed with the peak of the normalized Fourier
energy density to the known average size of cells from
simulated data. However, even though for the original
data the exact locations of all cell walls are known, it
is still not trivial to define an average cell size. From
the Voronoi tessellation, we easily retrieved the vol-
ume of each cell (completely enclosed in the image),
whose averaged value is denoted V . Thus, the aver-
age diameter was obtained from dimensional analysis:
DV = λV 1/3, the proportionality factor λ depending on
the precise mean morphology of the cells. Changing the
cell shape from spherical to cubical would alter the cal-
culation of the diameter by 30%. Besides, since the cell
contour is always included when computing the cellu-
lar volume, we will more precisely use DV = λV 1/3 − 1
(pixels) so that the contour is not counted twice in the
distance between two cells.

Several values of r0, the mean radius of the Voronoi
cells, were tested (Fig. 2). The Fourier peak was both
wider and lower with increasing cell size because of
finite size effects in the Fourier transformation. Fig-
ure 2b shows that the measure from the Fourier anal-
ysis correlates very well with the direct measure from
the Voronoi cells when choosing γ = 1 and λ = 1 (slope
0.96, coefficient of determination 0.992).

3.2 Relation between the energy spectral density,
the structure factor and the cell form factor

The form and structure factors are generally deduced
from diffusion patterns and help characterize the orga-
nization of matter. Here, we tested if we could deduce
values for these two factors from the spectral energy
densities introduced in Eqs. (2) and (3). The power
spectral density can be calculated analytically for a 3D
aggregate constituted of Ncells within the approxima-
tion of isotropic material. We denote fj(r) the fluores-
cence intensity due to cell j. Within the approximation
that all cells have the same intensity profile f(r), the
total intensity is:

I(r) =
Ncell∑

j=1

f(r − rj) (4)

with rj the center of cell j. The square norm of the
Fourier transform coefficients of I(r), Ĩ(k) then writes:

|Ĩ(k)|2 = Ncell ∗ |f̃(k)|2S(k) (5)

with S(k) = 1
Ncell

∑Ncell

j=1 e−2πik.(rj−rk) and |f̃(k)|,
respectively, the structure and form factor of the cell.
Averaging over all angles, and if S(k) and |f̃(k)| are
uncorrelated, the power spectral density reads as:

en = en,cell(k) · S(k) (6)

with

en,cell =
4πNcellk

2|f̃(k)|2∫ |Ĩ(k)|dk (7)

being the averaged power density of all individual cells
renormalized by the total spectral density of the image
and S(k) =

∫
S(k) sinθ dθ dφ the integrated structure

factor on a shell of radius k. Figure 3b shows the inte-
grated structure factor calculated for the cells in the
simulated data. The latter shares similarities with the
structure factor of a hard sphere fluid [16], but still
appears more complex. This suggests that the inter-
action potential between the cells requires refinement
compared to volume exclusion. Unfortunately, both the
cell form (Fig. 3c) and structure factors (Fig. 3b) can-
not be obtained analytically as it could have been the
case for simpler geometries and known interactions (see
[17] for a review of well-known cases where models do
exist).

The power spectral density was fitted using Eq. (6).
This could only be done by introducing two constants,
α and β, that evidenced an affine relationship between
en and en,cell:

en(k) = αen,cell(k) · S(k) + β (8)
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(a) (b)

(c) (d)

Fig. 3 Relation between the normalized energy density
and the form and structure factors of cells in a simulated
aggregate. a From the Voronoi tessellation each cell in the
image volume could be individually segmented to obtain
both its centroid and its associated cell form factor. b Struc-
ture factor computed from the centroid obtained from a. c
Cell form factor averaged from all the cells segmented in a.
d Comparison of the energy density of the cell image and the
average cell form factor multiplied by the structure factor,
both quantities show a linear relationship with a coefficient
α = 3.45 and β = −6.15

We obtained α = 3.45 and β = −6.15 (Fig. 3d).
The fact that we do not get α = 1 and β = 0 [as
expected from Eq. (6)] may arise from the conjunction
of different reasons. Firstly, cross-correlations between
the shape and structure factors are expected, as cells are
deformable objects packed in the aggregate. Secondly,
the cell shape factor is accounting twice for each cell
facet (see material and methods). Lastly, but maybe the
most important reason, this adjustment may originate
from finite size effects, the numerical Fourier transform
being a truncated version of the analytical one. However
Fig. 3d still shows that the Fourier energy density is well
rationalized using the product of the average cell form
factor and the structure factor. Thus it clearly appears
that the peak in en corresponds to the first peak of the
structure factor.

3.3 Effect of experimental parameters on cell size
measurements

Below, we evaluate the robustness of the Fourier analy-
sis to provide an accurate measurement of the mean cell
size as a function of the modeled acquisition parame-
ters (defined on Fig. 3a, c). For all the following results,
a set of 11 3D-images generated with r0 = 5 (i.e., an
average cell diameter DV = 10 pixels) were used. We
varied sequentially the number of images per field of
view by varying the image size L × L × Lz, the pixel
size in z (dz) and the sample thickness Lz.

Fig. 4 The Fourier analysis provides accurate estimates
of cell size down to a field of view containing 3 cells in
each directions. a Shape of the normalized energy density
as a function of the size L. As expected, the peaks become
smaller and wider when L decreases. b Blue: mean error
(DF − DV )/DV in % and its associated standard devia-
tion calculated on a batch of 11 3D images as a function
of the size L (r0 = 5, σ between 0 and 2). Red: same for
(D′

F −DV )/DV . Blue and red points are slightly shifted for
the sake of clarity

3.3.1 Effect of the number of cells per field of view

For obtaining a nice peak in the Fourier space, there
should be a sufficient number of cells in each image; the
cell volume itself is not as crucial as long as it is still
measurable, as we already demonstrated in 2D [9]. The
higher the number of visible wavelengths, the stronger
the peak at that corresponding frequency in Fourier
space will be (see Fig. 4b). The influence of the cell
number and, more specifically, the quantification of the
minimal number of cells required for the effectiveness
of the Fourier analysis were investigated.

In this section, we took dz = 1 and Lz = L, and the
mean error on cell size measurement was investigated as
a function of L (Fig. 4b). As cell size was kept constant,
this resulted in varying the number of cells in the image.

Even up to L = 32 pixels, the mean error remained
close to zero with standard deviation around 3%. As the
cell size is set around 10 pixels, this indicates that hav-
ing 3 cells in each direction is enough to obtain a valid
result. Therefore, this method is efficient to accurately
provide the mean cell size even with high-magnification
images where the number of cells in the field of view is
reduced.

The direct measure of the peak position is quite sen-
sitive to the shape of the curve and can unfortunately
be fitted by a Gaussian for a subpixel accuracy, and this
may induce imprecise measurements of cell size. So, the
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Fig. 5 The pixel size in z only influences the measurement
if it becomes of the order of the cell size. a Shape of the
normalized energy density as a function of frequency for in-
depth pixel size dz. b Mean error (Df −DV )/DV in % and
its associated standard deviation calculated on a batch of
11 3D images as a function of the in-depth pixel size dz
(r0 = 5, σ between 0 and 2, L = 128)

position of the weighted peak was also calculated:

fpeak =

∫ f2

f1
k ∗ en(k) dk

∫ f2

f1
en(k) dk

(9)

with f1 and f2 the frequencies at half height of the prin-
cipal peak. Equation (9) thus leads to a mean cell diam-
eter D′

F = 1/fpeak. Figure 4b shows that the cell diam-
eter calculated by this latter technique provides slightly
underestimated values compared to the direct measure
of the peak position. Still, this method is more robust
as the values calculated with this technique appear less
dispersed.

3.3.2 Effect of the pixel size in z (dz)

In image acquisition, one of the hardest things to
achieve is a high resolution in z-axis direction. So far,
the resolutions in x, y and z we used were identi-
cal. However, experimentally the distance between z
planes dz is twice or even four times larger than the
resolution in the x-y plane. The influence of the in-
depth resolution on cell size measurements was tested
by removing information from a simulated 3D image
with 128 × 128 × 128 pixels. Only one slice every dz
was kept, dz representing the pixel size in z. As shown
in Fig. 5b, when dz is of the order of the cell size (10
pixels here), the results are biased and the size mea-
surements are overestimated with a larger error. This
result suggests that this method keeps accurate even

Fig. 6 Influence of the number of z-slices in the stack on
the accuracy of the calculated cell size. a Shape of the nor-
malized energy density as a function of frequency for dif-
ferent numbers of z slices. As expected, the peaks become
smaller and wider, while this number decreases. b Mean
error and its associated standard deviation calculated on a
batch of 11 3D images as a function of the number of z
slices in the stack (r0 = 5, σ between 0 and 2, L = 128).
Blue points, dz = 1. Red point: dz = 10

with low-magnification objectives and does not require
high-resolution microscopy.

3.3.3 Effect of sample thickness Lz

Experimentally, the total number of z planes in the
stack is often significantly lower than the total num-
ber of pixels in x and y directions. We thus wondered
whether 3D imaging is necessary or whether a single
cross section could be enough to accurately measure the
mean cell size. Here we used dz = 1 and varied the value
of Lz. Figure 6 shows that as the number of z planes
decreases, the results become more and more biased.
The cells appear smaller than they really are (which is
consistent as within a single plane, many sliced cells are
visible, that appear smaller than they really are). Con-
sistent with Sect. 3.3.1, the optimal number of slices
to get accurate measurement is about 30, which cor-
responds to about three cells in the z direction. Alto-
gether, our data suggest that to get a proper measure-
ment of cell size, it is enough to have stacks containing
only 3 cells in all directions, with an in-depth resolution
of the order of the cell size (thus a 3D stack of 4 images).
Figure 6b shows the accuracy of the measure in these
conditions (red point). The mean error is close to zero
although the standard deviation is slightly larger than
for a more resolved imaging.
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(a) (b)

Fig. 7 The standard deviation of the cell size distribution
can be calculated from the normalized energy density spec-
trum [Eq. (10)]. a Width of the size distribution as a func-
tion of the average size for two different sets of artificial
images (in red and in blue). b Proxy for the width of the
distribution obtained from the Fourier analysis [Eq. (10)]
as a function of the actual width obtained from segmented
images. Both correlate linearly, with a slope a = 5.4 (red
line). Determination coefficient of 0.9

4 Measuring the standard deviation of the
size distribution

The quantification of the standard deviation of the cell
size distribution was addressed empirically. Because the
width of a distribution is proportional to the mean size
for a given set of simulated data (Fig. 7a) which may
lead to undesired correlations, two different batches of
simulated data were considered. In the first set of data,
the distribution of the distance between the Voronoi
seeds was a Dirac function, whose center was varied. In
the second set, the distribution was a Gaussian with a
given mean distance and the width of the distribution
was varied. We show that for both ways of generating
the Voronoi cells, a good proxy for the quantification of
the standard deviation of the cell size distribution is:

σF = 1/f1 − D′
F (10)

where f1 is the frequency at half height on the left of
the principal peak, f1 < fD′

F
. σF was compared to the

known standard deviation of the size distribution σV

(Fig. 7b). A linear correlation between σV and σF was
obtained with a high correlation coefficient. This vali-
dates the use of Eq. (10) to quantify cell size dispersion
as σF /a (a = 5.4 being the proportionality coefficient
between σF and σV see Fig. 7).

5 Results on two-photon stacks of cellular
aggregates

In the previous section, we evaluated the performance
of the algorithm on simulated 3D data. In this section,
we tested its performance on real data. Cellular aggre-
gates of HT29 cells were incubated with a fluorophore
that only penetrates in the interstitial space between
each cells. Two-photon microscopy was used for imag-

Fig. 8 The Fourier analysis accurately determines cell size
of real data. a Projections of a two-photon stack of a cel-
lular aggregate in (xy), (xz), and (yz). (xz) and (yz) pro-
jection were taken along the red lines drawn in the (xy)
plane. Bar: 50 µm. Cells segmented manually using Amira
software are encircled with colors. b Superimposition of the
histogram of 1/DV obtained manually (orange bins) and of
1/DF obtained with the FFT signal (blue line)

ing (Fig. 8). Energy density function [Eq. (2)] was com-
puted (a few seconds of computation). In parallel, 100
cells of the dataset were manually segmented using
Amira software (a few hours of segmentation) (Fig. 8a).
Figure 8b shows that the Fourier analysis fits remark-
ably well with the calculation from the manual segmen-
tation. The mean size of the manually segmented cells
was of 11.40±1.38µm (average value ± standard devia-
tion), whereas the measurement from the Fourier anal-
ysis gave 11.50±1.37µm. The latter standard deviation
was obtained following Eq. (10) as σF /5.4.

6 Local measurements on an aggregate
compressed in between two plates
(cylindrical geometry)

A cellular aggregate was positioned in a microfluidic
channel. Confinement in the channel imposed a cylin-
drical shape (Fig. 9a). The in-plane radius was exam-
ined in response to an osmotic shock (see [12] for
details). Variation of the osmotic pressure provoked a
decrease in size of the whole aggregate and of the indi-
vidual cells. We tested the Fourier analysis to quan-
tify the difference in cell size assuming that the num-
ber of cells remains constant in the aggregate during
the experiment (which is a valid assumption as the
compression only lasts half an hour). First, the ini-
tial radius of the spheroid Rbefore and its final radius
after compression Rafter were measured. A ratio of
Rafter/Rbefore = 0.937 was obtained (Fig. 9b). Ratio of
the mean cell sizes obtained with the Fourier analysis
gave consistent results: D′

after/D′
before = 0.937 (Fig. 9c).

We finally show that local measurements are indeed fea-
sible; as explained in Sect. 2.5, we calculated the cell
size as a function of the radial distance to the center
using subimages of size L=128 pixels, Lz = 39 (initial
image size 512 × 512 × 39). We observe a significant
decrease in size toward the cell center (Fig. 9d). This
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(a) (b)

(c) (d)

Fig. 9 The Fourier analysis is undisturbed by the global
shape of the aggregate, measure small variations of cell size
and can be applied on subimages to get local measure-
ments. a A HT29 aggregates are confined in a microflu-
idic chamber and submitted to an osmotic shock as done
in [12]. b The aggregate radius is tracked during the shock.
After segmentation a circle is fitted to the aggregate global
shape. The ratio of the radii before and after the shock is
Rafter/Rbefore = 0.937. c Normalized energy density as a
function of frequency before (blue) and after (violet) the
osmotic shock. Difference in size is identical to the macro-
scopic measurement : D′

after/D′
before = 0.937. d The Fourier

algorithm was applied locally on subimages disposed on a
polar grid (r, θ) (r being the distance from the aggregate
center). The results were averaged along θ. Cell size is plot-
ted as a function of this radial distance

result then showed that (i) the Fourier analysis can han-
dle a cylindrical symmetry, and (ii) it allows addressing
variations of the size of few % and (iii) can be applied
locally for a getting a spatial map of cell size inside the
aggregate.

7 Conclusions

We present here an original method based on Fourier
transform to calculate the mean cell size and the width
of its distribution very accurately. This method exploits
the fact that the Fourier transformation of the fluores-
cent signal gives a pattern that can be analyzed with
tools from elastic scattering theory. A first observation
is the isotropic scattering pattern of spherical symme-
try, which supports the intuition that cells in 3D aggre-
gates have a weak positional order. The originality of
the method is to analyze the power spectral density
not renormalized by the spectral volume. This allows
enhancing signals that are away from the center of the
scattering pattern. Then, the position of the first peak
can be accurately measured, giving access to an accu-
rate quantification of the cell mean diameter. While,
in principle, the scattering pattern could provide finer

information on the mean form of the cells or on their
positional order, this information relies on the use of
interaction models. To the best of our knowledge, such
models do not exist for cellular organizations yet, thus
limiting the exploitation of the diffusion pattern. How-
ever, an empirical approach was proposed to obtain the
width of the size distribution, which will gain being
confirmed by theoretical modeling.

The accuracy of this new tool was tested thoroughly
in regard to experimental conditions. For instance, we
show that a volume of 3×3×3 cells is enough to obtain
an accurate quantification of the cell size, with error
below 5%. We indeed show that very local measure-
ments could be performed. Moreover, our tool does not
require a very high z resolution nor a very large field of
view to get accurate measurements. It is interesting to
note that one single set of data can be used several time
with different sectioning (varying dz for example) to
get different measurements of the peak location. Then,
the averaged result gives an even more accurate quan-
tification. There is no doubt that this technique can
also be applied in vivo when automatic cell segmenta-
tion is too difficult to perform as in the data presented
here. Further development could enclose the study of
cell anisotropy, which would necessitate fitting the data
by an ellipse instead of a sphere.
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